The Shortcut Problem - Complexity and Approximation
نویسندگان
چکیده
During the last years, speed-up techniques for DIJKSTRA’s algorithm have been developed that make the computation of shortest paths a matter of microseconds even on huge road networks. The most sophisticated methods enhance the graph by inserting shortcuts, i.e. additional edges, that represent shortest paths in the graph. Until now, all existing shortcut-insertion strategies are heuristics and no theoretical results on the topic are known. In this work, we formalize the problem of adding shortcuts as a graph augmentation problem, study the algorithmic complexity of the problem, give approximation algorithms and show how to stochastically evaluate a given shortcut assignment on graphs that are too big to evaluate it exactly.
منابع مشابه
Approximation Solutions for Time-Varying Shortest Path Problem
Abstract. Time-varying network optimization problems have tradition-ally been solved by specialized algorithms. These algorithms have NP-complement time complexity. This paper considers the time-varying short-est path problem, in which can be optimally solved in O(T(m + n)) time,where T is a given integer. For this problem with arbitrary waiting times,we propose an approximation algorithm, whic...
متن کاملMinimizing Average Shortest Path Distances via Shortcut Edge Addition
We consider adding k shortcut edges (i.e. edges of small fixed length δ ≥ 0) to a graph so as to minimize the weighted average shortest path distance over all pairs of vertices. We explore several variations of the problem and give O(1)-approximations for each. We also improve the best known approximation ratio for metric k-median with penalties, as many of our approximations depend upon this b...
متن کاملThe Shortcut Problem - Complexity and Algorithms
We study a graph-augmentation problem arising from a technique applied in recent approaches for route planning. Many such methods enhance the graph by inserting shortcuts, i.e., additional edges (u,v) such that the length of (u,v) is the distance from u to v. Given a weighted, directed graph G and a number c ∈ Z>0, the shortcut problem asks how to insert c shortcuts into G such that the expecte...
متن کاملComplexity and approximation ratio of semitotal domination in graphs
A set $S subseteq V(G)$ is a semitotal dominating set of a graph $G$ if it is a dominating set of $G$ andevery vertex in $S$ is within distance 2 of another vertex of $S$. Thesemitotal domination number $gamma_{t2}(G)$ is the minimumcardinality of a semitotal dominating set of $G$.We show that the semitotal domination problem isAPX-complete for bounded-degree graphs, and the semitotal dominatio...
متن کاملMinimizing the Diameter of a Network Using Shortcut Edges
We study the problem of minimizing the diameter of a graph by adding k shortcut edges, for speeding up communication in an existing network design. We develop constant-factor approximation algorithms for different variations of this problem. We also show how to improve the approximation ratios using resource augmentation to allow more than k shortcut edges. We observe a close relation between t...
متن کامل